SUGGESTED SOLUTION TO HOMEWORK 6

JUNHAO ZHANG

Problem 1. Let $\left\{x_{n}\right\}_{n \geq 1}$ be a sequence in an inner product space. Show that conditions $\left\|x_{n}\right\| \rightarrow\|x\|$ and $\left\langle x_{n}, x\right\rangle \rightarrow\langle x, x\rangle$ imply $x_{n} \rightarrow x$.
Proof. Since $\left\|x_{n}\right\| \rightarrow\|x\|$ and $\left\langle x_{n}, x\right\rangle \rightarrow\langle x, x\rangle$, therefore for arbitrary $\varepsilon>0$, there exists $N_{1}, N_{2} \in \mathbb{N}$ such that for $n>N_{1}$,

$$
\left|\left\|x_{n}\right\|-\|x\|\right|<\min \left\{\frac{\sqrt{3} \varepsilon}{3}, \frac{\varepsilon^{2}}{6\|x\|}\right\}
$$

and for $n>N_{2}$,

$$
\left|\left\langle x_{n}, x\right\rangle-\langle x, x\rangle\right|<\frac{\varepsilon^{2}}{6}
$$

then for $n>\max \left\{N_{1}, N_{2}\right\}$,

$$
\begin{aligned}
\left\|x_{n}-x\right\|^{2}= & \left\langle x_{n}-x, x_{n}-x\right\rangle \\
= & \left(\left\|x_{n}\right\|-\|x\|\right)^{2}+\left(2\left\|x_{n}\right\|\|x\|-\left\langle x_{n}, x\right\rangle-\left\langle x, x_{n}\right\rangle\right) \\
\leq & \left(\left\|x_{n}\right\|-\|x\|\right)^{2}+2\|x\| \cdot \mid\left\|x_{n}\right\|-\|x\| \| \\
& +\left|\langle x, x\rangle-\left\langle x_{n}, x\right\rangle\right|+\left|\overline{\langle x, x\rangle-\left\langle x_{n}, x\right\rangle}\right| \\
< & <\varepsilon^{2},
\end{aligned}
$$

which implies that $x_{n} \rightarrow x$.
Problem 2. Let x and y be linearly independent vectors in an inner product space such that $\|x\|=\|y\|=1$. Show that

$$
\|t x+(1-t) y\|<1, \quad \text { for } 0<t<1
$$

Proof. Since $\|x\|=\|y\|=1$, then for $0<t<1$, by Cauchy inequality,

$$
\begin{aligned}
\|t x+(1-t) y\|^{2} & =\langle t x+(1-t) y, t x+(1-t) y\rangle \\
& \leq t^{2}\|x\|^{2}+2 t(1-t)\langle x, y\rangle+(1-t)^{2}\|y\|^{2} \\
& \leq t^{2}\|x\|^{2}+2 t(1-t)\|x\|\|y\|+(1-t)^{2}\|y\|^{2} \\
& \leq 1,
\end{aligned}
$$

where the equality holds if and only if x and y are linear dependent, therefore for linearly independent vectors x and y,

$$
\|t x+(1-t) y\|<1
$$

Problem 3. Prove that in an inner product space, $x \perp y$ if and only if

$$
\|x+\lambda y\|=\|x-\lambda y\|
$$

for all scalars $\lambda \in \mathbb{F}$ where $\mathbb{F}=\mathbb{R}$ or \mathbb{C}.

Proof. \Rightarrow : Let $x \perp y$, then

$$
\langle x, y\rangle=0,
$$

therefore for all $\lambda \in \mathbb{F}$,

$$
\begin{aligned}
\|x+\lambda y\| & =\sqrt{\langle x+\lambda y, x+\lambda y\rangle} \\
& =\sqrt{\langle x, x\rangle+\langle\lambda y, \lambda y\rangle} \\
& =\sqrt{\langle x-\lambda y, x-\lambda y\rangle} \\
& =\|x-\lambda y\| .
\end{aligned}
$$

\Leftarrow : Suppose for all $\lambda \in \mathbb{F}$,

$$
\|x+\lambda y\|=\|x-\lambda y\|,
$$

then by Polarization indentities, if $\mathbb{F}=\mathbb{R}$,

$$
\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)=0
$$

if $\mathbb{F}=\mathbb{C}$,

$$
\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}+\mathbf{i}\|x+\mathbf{i} y\|^{2}-\mathbf{i}\|x-\mathbf{i} y\|^{2}\right)=0 .
$$

Hence for either $\mathbb{F}=\mathbb{R}$ or \mathbb{C}, we have $x \perp y$.
Email address: jhzhang@math.cuhk.edu.hk

